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Abstract
In this paper we adopt a generic, global and non-entropic approach to the
problem of the arrow of time, according to which the arrow of time is a generic,
intrinsic and geometrical property of spacetime. We demonstrate that the arrow
of time so defined is generic in the sense that any spacetime with physically
reasonable properties (e.g. time-orientability and global time) will be endowed
with an arrow of time. The only exceptions are very special cases belonging
to a subset of zero measure of the set of all possible spacetimes. We also show
the dual role played by the energy–momentum tensor in the context of our
approach. On one hand, the energy–momentum tensor is the intermediate step
that permits us to turn the geometrical time-asymmetry of the universe into
a local arrow of time manifested as a time-asymmetric energy flow. On the
other hand, the energy–momentum tensor supplies the basis for deducing the
time-asymmetry of quantum field theory, posed as an axiom in this theory.

PACS number: 98.80.Dr

1. Introduction

Since the nineteenth century, the problem of the arrow of time has been one of the most
controversial questions in the foundations of physics and one of the main concerns of many
physicists. In the last few years we have been very interested in this problem and have
devoted several papers to the cosmological origin of the arrow of time [1]. This research
has reached its culmination in papers [2] and [3], where we have presented a comprehensive
formulation of our view on the subject based on a generic, global and non-entropic approach,
according to which the arrow of time is a generic, intrinsic and geometrical property of
spacetime.
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The main aim of this paper is twofold. First, we will demonstrate the generic nature of the
global and non-entropic arrow of time. Here we will provide a demonstration more general
than that presented in [2] and [3], where the generic nature of the arrow of time was proved
in the particular case of Friedmann–Lemâitre–Robertson–Walker (FLRW) models. Second,
we will show the dual role played by the energy–momentum tensor in the context of our
approach. On one hand, the energy–momentum tensor is the intermediate step that allows us
to turn the geometrical time-asymmetry of the universe into a local arrow of time manifested
as a time-asymmetric energy flow. On the other hand, the energy–momentum tensor supplies
the basis for deducing the time-asymmetry of quantum field theory posed as an axiom in this
theory.

We are completely aware of the fact that this global and non-entropic approach is very
different from the usual opinions on the subject. Most physicists will find it strange in light of
traditional assumptions according to which the arrow of time is inescapably linked to entropy
and complexity notions of thermodynamics. In this paper we will try to show that a different
perspective is possible, and that it is reasonable to pay attention to a new proposal in seeking an
answer to a problem as controversial as the arrow of time. In order to reach this goal we devote
the first section of the paper to the justification of our global and non-entropic approach. On
this basis, the paper is organized as follows. In section 2 the problems of irreversibility and the
arrow of time are precisely stated, and the global and non-entropic character of our approach
is justified in contrast with traditional approaches. Section 3 is devoted to the introduction of
the definition of the global and non-entropic arrow of time and the presentation of the theorem
that proves the generic nature of such an arrow. In section 4 the arguments developed in the
previous section are applied to the case of FLRW models. In section 5 we show the role
played by the energy–momentum tensor in translating the global geometrical arrow into the
local level. Finally, in section 6 we show how the energy–momentum tensor can be used to
justify the time-asymmetry postulate of quantum field theory on global grounds.

2. The justification of the local and non-entropic approach

2.1. Irreversibility versus arrow of time

Traditionally, the problems of irreversibility and the arrow of time have been wrongly
identified, as if irreversibility was the clue for understanding the origin and the nature of the
arrow of time. On the other hand, the concepts of irreversibility and time-reversal invariance
are invoked in the discussions about the arrow of time, but usually with no elucidation of their
precise meanings. For this reason, we will begin by providing some necessary definitions.

Definition 1. A dynamical equation is time-reversal invariant if it is invariant under the
transformation t → −t; as a result, for each solution f (t), f (−t) is also a solution.

Definition 2. A solution of a dynamical equation is reversible if it corresponds to a closed
curve in phase space3.

It is quite clear that both concepts are different to the extent that they apply to different
mathematical entities: time-reversal invariance is a property of dynamical equations (laws)
and, a fortiori, of the set of their solutions (evolutions); reversibility is a property of a single

3 This definition can be easily generalized to statistical and quantum cases: an evolution is irreversible if it has a
final (or initial) equilibrium state, namely, a ‘point of no return’.
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solution of a dynamical equation. Furthermore, they are not even correlated: for instance,
time-reversal invariant equations can have irreversible solutions4.

When the fact that these two concepts apply to different mathematical entities is
recognized, the problem of irreversibility can be clearly stated: how to explain irreversible
evolutions in terms of time-reversal invariant laws. The difference between both concepts also
shows that the problem of irreversibility has a simple conceptual answer: nothing prevents
a time-reversal invariant equation from having irreversible solutions. Of course, a great deal
of theoretical work is needed for obtaining irreversible evolutions from an underlying time-
reversal invariant dynamics5. For instance, much effort has been directed towards explaining
the irreversible behaviour of quantum systems in terms of the time-reversal invariant quantum
theory (see, e.g., [4]). Here we only mean that, in order to face the problem of irreversibility,
the question of the arrow of time does not need to be addressed. In fact, the distinction
between the two directions of time is usually presupposed when the irreversible evolutions
are conceived as processes going from non-equilibrium to equilibrium or from preparation to
measurement towards the future.

By contrast, the problem of the arrow of time arises when we seek a physical correlate of the
intuitive asymmetry between past and future. The main difficulty to be encountered in solving
this problem is the fact that there is nothing in physical evolution laws that distinguishes,
in a non-arbitrary way, between past and future as we conceive them in everyday life. It
might be objected that physics implicitly assumes this distinction with the use of temporally
asymmetric expressions, such as ‘future light cone’, ‘initial conditions’, ‘increasing time’ and
so forth. However, this is not the case: in physics the distinction between past and future is
conventional, that is, only based on assigning different names to formally identical objects.
The problem of the arrow of time, in contrast, requires us to find a substantial difference
[5, 6] between the two temporal directions (for a full discussion of this subject, see [2]). This
means that we must address the problem from a perspective purged of our temporal intuitions:
as Price [7] claims, it is necessary to stand at a point outside time, and thence to regard reality
in atemporal terms.

But then, what does ‘the arrow of time’ mean when we accept this constraint? Of
course, the traditional expression coined by Eddington has only a metaphorical sense: its
meaning must be understood by analogy. We recognize the difference between the head
and the tail of an arrow on the basis of its geometrical properties; therefore, we can
substantially distinguish between both directions, head-to-tail and tail-to-head, independently
of our particular perspective. Analogously, we will conceive the problem of the arrow of time
in terms of the possibility of establishing a substantial distinction between the two directions
of time on the basis of exclusively physical arguments.

2.2. A generic, global and non-entropic approach

(i) Why global? The traditional local approach owes its origin to the attempts to reduce
thermodynamics to statistical mechanics: in this context, the usual answer to the problem of

4 For instance, the equation of motion of a pendulum with Hamiltonian

H = 1

2
p2

θ +
K2

2
cos θ

is time-reversal invariant, namely, it is invariant under the transformation θ → θ, pθ → −pθ ; however, whereas
the trajectories within, above and below the separatrices are reversible since they are closed curves, the separatrices
themselves are irreversible since the corresponding motions tend asymptotically to the point where the separatrices
intersect themselves and the pθ = 0 axis.
5 Usually it is necessary to use coarse-grainings, traces, restricted algebras, etc.
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the arrow of time consists in defining the future as the direction of time in which entropy
increases. However, already in 1912 Ehrenfest and Ehrenfest [8] had noted that, if the entropy
of a closed system increases towards the future, such an increase is matched by a similar one
in the past evolution of the system. The argument can also be posed in different terms. Let
us assume that we have solved the irreversibility problem; so we have the description of all
the irreversible evolutions, say, decaying processes, of the universe. However, since we have
not yet established a substantial difference between both directions of time, there is no way to
decide towards which temporal direction each decay proceeds. Of course, we would obtain
the arrow of time if we could coordinate the processes in such a way that all of them parallely
decay towards the same temporal direction. But this is precisely what local physics cannot
offer: only by means of global considerations can all the decaying processes be coordinated.
This means that the global arrow of time plays the role of the background scenario where we
can meaningfully speak of the temporal direction of irreversible processes, and this scenario
cannot be built up by means of local theories that only describe phenomena confined in small
regions of spacetime.

(ii) Why non-entropic? In the late nineteenth century, Boltzmann offered the first global
approach to the problem of the arrow of time [9]. Since this seminal work, many authors
have related the temporal direction past-to-future to the gradient of the entropy function of
the universe (see, e.g., [10, 11]). This global entropic approach rests on two assumptions:
it is possible to define entropy for a complete cross-section of the universe, and there is an
only time for the universe as a whole. However, both assumptions involve difficulties. In the
first place, the definition of entropy in cosmology is still a very controversial issue: there is
no consensus regarding how to define a global entropy for the universe. In fact, it is usual
to work only with the entropy associated with matter and radiation because there is no clear
idea yet about how to define the entropy due to the gravitational field. In the second place,
when general relativity comes into play, time cannot be conceived as a background parameter
which, as in pre-relativistic physics, is used to mark the evolution of the system. But there is a
further conceptual argument for abandoning the global entropic approach. As is well known,
a given value of entropy is compatible with many configurations of a system: entropy is a
phenomenological property. But, if the arrow of time reflects a substantial difference between
both directions of time, it is reasonable to consider it as an intrinsic property of time, or better,
of spacetime, and not as a secondary feature depending on a phenomenological property. For
these reasons we follow Earman’s ‘Time Direction Heresy’ [12], according to which the arrow
of time is an intrinsic, geometrical property of spacetime embodied in gµν(x), which does not
need to be reduced to non-temporal features. In other words, the geometrical approach to the
problem of the arrow of time has conceptual priority over the entropic approach, since the
geometrical properties of the universe are more basic than its thermodynamic properties.

(iii) Why generic? The global entropic approach, which defines the future as the direction of
time in which the entropy of the universe increases, has to posit a low-entropy initial state of
the universe. Then, the problem is pushed back to the question of why that initial state has low
entropy. But a low-entropy initial state is extraordinarily improbable in the collection of all
possible initial states. According to Davies [11], the expansion of the early universe during the
first few minutes caused it to depart from equilibrium; but this fact requires us to suppose that
the gravitational field at the time of the big bang was in a much-less-than-maximum entropy
state. Penrose [13], in turn, suggests that the early universe begins with a high degree of
spatial homogeneity and isotropy; but this uniform distribution is actually a low-entropy state
when gravity is taken into account, since the purely attractive force of gravity is such that
a uniform distribution is highly improbable. In either case, the global entropic approach is
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committed to explain an extraordinarily improbable initial condition such as the low-entropy
or the near-flatness of the spacetime. In contrast, in our global and non-entropic approach
there are no improbable conditions which require an explanatory account. We will prove that,
if the spacetime has some minimal topological properties such as time-orientability and global
time (which, anyway, are also necessary conditions for the existence of the arrow of time in
the entropic approach), the arrow of time is a generic feature of the universe. This means
that, in the collection of all possible spacetimes, the universes endowed with the global and
non-entropic arrow of time are overwhelmingly probable: the non-existence of the arrow of
time is what requires an extraordinarily fine tuning of all the variables of the universe.

3. The definition of the global and non-entropic arrow of time

3.1. Conditions: time-orientability and global time

As is well known, many different topologies are consistent with Einstein’s field equations. In
particular, there arises the possibility of spacetime being curved along the spatial dimension
in such a way that, e.g., the spacelike sections of the universe become the three-dimensional
analogue of a Möbius band; in this case it is said that the spacetime is non-time-orientable.

Definition 3. A spacetime is time-orientable if there exists a continuous non-vanishing vector
field γ µ(x) on it which is non-spacelike everywhere.

By means of this field, the set of all semicones of the manifold can be split into two
equivalence classes conventionally called C+ and C−: the semicones of C+ contain the vectors
of the field and the semicones of C− do not contain them. On the other hand, in a non-
time-orientable spacetime it is possible to transform a future pointing timelike vector into
a past pointing timelike vector by means of a continuous transport that always keeps non-
vanishing timelike vectors timelike; therefore, the distinction between future semicones and
past semicones is not definable in a univocal way on a global level. This means that the
time-orientability of spacetime is a precondition for defining a global arrow of time since, if
spacetime is not time-orientable, it is not possible to distinguish between the two temporal
directions for the universe as a whole6.

But time-orientability still does not guarantee that we can talk of the time of the universe,
that is, a time that synchronizes the clocks fixed to all the particles of the universe. In
fact, a spacetime may be such that it is not possible to partition the set of all events into
equivalent classes such that: (i) each is on a spacelike hypersurface and (ii) the hypersurfaces
can be ordered in time. There is a hierarchy of conditions which, applied to a time-orientable
spacetime, avoid ‘anomalous’ temporal features (see [16]). One of the strongest conditions
is the existence of a global time function, which increases along every future directed non-
spacelike curve.

6 Nevertheless, not all accept this conclusion. For instance, Mattews [14] claims that a spacetime may have a
regional but not a global arrow of time if the arrow is defined by means of local considerations. But this opinion
implies ignoring the principles of universality (according to which the laws of physics are valid at all points of the
spacetime) and of uniqueness (which states that there is only one universe and completely disconnected spacetimes
are not allowed), unquestioningly accepted in contemporary cosmology (for a full argument, see [2]). Although there
are quantum cosmologies exhibiting disconnected spacetimes, such models only play an explanatory role since they
are unvarifiable in principle. Anyway, even if disconnected spacetimes were allowed, each connected region could
be considered a universe in itself. This fact is relevant since we are interested in explaining the arrow of time of our
own connected universe (for a different opinion, see [15] and our criticism in [2]).
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Definition 4. A global time function on the Riemannian manifold M is a function t : M → R

whose gradient is timelike everywhere.

The existence of such a function guarantees that the spacetime can be globally split into
hypersurfaces of simultaneity which define a foliation of the spacetime (see [17]). Of course,
the existence of a global time imposes a significant topological and metric limitation on the
spacetime. But with no global time, there is not a single time of the universe and, therefore, it
is nonsensical to speak of the two directions of time for the universe as a whole. Therefore, the
possibility of defining a global time is a precondition for meaningfully speaking of a global
arrow of time.

This fact provides an additional argument against the global entropic approach, which
takes for granted the possibility of defining the entropy function of the universe. This amounts
to the assumption that the spacetime can be partitioned in spacelike hypersurfaces on which
the entropy of the universe can be defined (that is, the spacetime has a global time function).
When the possibility of spacetimes with no global time is recognized, it is difficult to deny the
conceptual priority of the geometrical structure of spacetime over its entropic features in the
context of our problem.

3.2. Time-asymmetry

It is quite clear that time-orientability and existence of global time are merely necessary
conditions for defining the global arrow of time: they do not provide a physical, substantial
criterion for distinguishing between the two directions of time. As we will see, such a
distinction requires the time-asymmetry of the universe.

It is usually accepted that the obstacle to the definition of the arrow of time relies on
the fact that the fundamental laws of physics are time-reversal invariant7. Nevertheless, this
common viewpoint can be objected to when the concept of time-symmetry is clearly elucidated
and compared with the concept of time-reversal invariance: whereas time-reversal invariance
is a property of dynamical equations (laws), time-symmetry is a property of a single solution
(evolution) of a dynamical equation.

Definition 5. A solution f (t) of a dynamical equation is time-symmetric if there is a time tS
such that f (t + tS) = f (t − tS).

Of course, the time-reversal invariance of an equation does not imply the time-symmetry
of its solutions: a time-reversal invariant law may be such that all or most of the possible
evolutions relative to it are individually time-asymmetric. Price [7] illustrates this point with
the familiar analogy of a factory which produces equal numbers of left-handed and right-
handed corkscrews: the production as a whole is completely unbiased, but each individual
corkscrew is asymmetric.

In the context of general relativity, the concept of time-symmetry cannot be defined in
such simple terms, but it can be formulated by means of the concept of time isotropy:

Definition 6. A time-orientable spacetime (M, g) (where M is a four-dimensional Riemannian
manifold and g is a Lorentzian metric for M) is time isotropic if there is a diffeomorphism d
of M onto itself which reverses the temporal orientations but preserves the metric g.

On the basis of this definition, the concept of time-symmetry for a spacetime which admits
a global time can be characterized as follows.

7 The exception is the law that rules weak interactions. We will return to this issue in the last section.
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Definition 7. A time-orientable spacetime which admits a global time is time-symmetric with
respect to some spacelike hypersurface � corresponding to a constant value of the global time
if it is time isotropic and the diffeomorphism d leaves the hypersurface � fixed.

Intuitively, this means that, from the hypersurface �, the spacetime looks the same in both
temporal directions. Therefore, if a time-orientable spacetime is time-asymmetric, we will
not find a spacelike hypersurface � which splits the spacetime into two ‘halves’, one being
the temporal mirror image of the other with respect to their intrinsic geometrical properties.

But, how does this time-asymmetry allow us to choose a time orientation of the spacetime?
As we have seen, in a time-orientable spacetime a continuous non-vanishing non-spacelike
vector field γ µ(x) can be defined all over the manifold. Up to now, the universe is time-
orientable but not yet time oriented, because the distinction between γ µ(x) and −γ µ(x) is
just conventional. Now time-asymmetry comes into play: in a time-asymmetric spacetime,
any hypersurface � splits the manifold into two sections that are different from each other:
the universe on one side of � is substantially different from the universe on the other side.
We can choose any point x0 ∈ � and conventionally consider that the non-spacelike vector
γ µ(x0) points towards one side of � and that −γ µ(x0) points towards the other or vice versa:
in any case we have established a substantial difference between γ µ(x0) and −γ µ(x0) since
these vectors point to substantially different parts of the universe. We can conventionally call
the direction of γ µ(x0) ‘future’ and the direction of −γ µ(x0) ‘past’ or vice versa, but in any
case past is substantially different from future. Now we can extend this difference to the whole
continuous fields γ µ(x) and −γ µ(x) obtained by making the global continuations of γ µ(x0)

and −γ µ(x0) permitted by the definition of time-orientability: in this way, the time orientation
of the spacetime has been established. Since the field γ µ(x) is defined all over the manifold,
it can be used locally at each point x to define the future and the past semicones: for instance,
if we have called the direction of γ µ(x) ‘future’, C+(x) contains γ µ(x) and C−(x) contains
−γ µ(x).

3.3. The generic nature of the arrow of time

As Savitt [18] correctly points out, there are two different questions involved in the problem
of the arrow of time:

• The ‘how possible’ question: how is it possible to formulate a time-asymmetric model by
means of time-reversal invariant laws?

• The ‘how probable’ question: what is the reason to suppose that time-asymmetry is
probable?

We have already shown that the time-reversal invariance of laws is not an obstacle to the
construction of time-asymmetric models where the substantial distinction between the two
directions of time can be established. In this subsection we will address the second question
by proving the main result of our argumentation: in time-orientable spacetimes endowed with
a global time, time-asymmetry is generic to the extent that time-symmetric solutions of the
universe equations have measure zero in the corresponding phase space.

We will begin with a simple case. Let us consider a time variable function x(t) defined by
a time-reversal invariant second-order equation ẍ(t) = F [x(t)]. By definition of time-reversal
invariance, if x1 = x(t) is a solution of the equation, then x2 = x(−t) is also a solution.
In the general case, the initial conditions at t = 0 of both solutions are x1(0) = x2(0) and
ẋ1(0) = −ẋ2(0). But in the particular case in which ẋ1(0) = −ẋ2(0) = 0, both solutions
x1(t) and x2(t) coincide, leading to a single solution x1(t) = x2(−t) = x(t) which is time-
symmetric with respect to the axis t = 0. This means that whereas the space of the initial
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conditions corresponding to all the possible solutions is a two-dimensional space defined by
(x(0), ẋ(0)), the space of the initial conditions corresponding to time-symmetric solutions is
a one-dimensional space defined by (x(0), ẋ(0) = 0). If the dynamical equation describes
the time evolution of a typical system of classical mechanics, the time-symmetry conditions
become (q(0), p(0) = 0). Therefore, we can conclude either that the subset of time-symmetric
solutions has measure zero in the set of all possible solutions (this claim cannot be generalized
to spaces with no measure) or that the space of time-symmetric solutions is a proper subspace
of the space of all possible solutions (this conclusion is also valid in infinite-dimensional
spaces). Nevertheless, in both cases the central idea is the same: time-asymmetry is generic,
and time-symmetry is (extraordinarily) specific.

The argument developed for a simple case can now be extended to general relativity
and spacetimes governed by the time-reversal invariant Einstein field equations. Since time-
orientability and existence of a global time are necessary conditions for defining the arrow of
time, we will focus our attention on spacetimes describable by the ADM formalism, where
the foliability of the spacetime is assumed8. In this context, a 4-geometry of a spacetime is
said to be time-symmetric when there exists a spacelike hypersurface � such that the extrinsic
curvature vanishes at all its points: Kij = 0 (i, j = 1, 2, 3, g = det gij ) [19]. On the other
hand, the initial conditions are given by the following Cauchy data: gij (that is, the geometry

of �) and its time derivative ġij = ∂gij

∂t
(where t is the global time variable of the ADM

metric). But these data amount to having gij and its conjugated momentum πij , which can be
computed as (see [19] equation (21.91)):

πij = g1/2(gij ghkK
hk − Kij ). (1)

According to this equation, if the time-symmetry condition Kij = 0 holds, then πij = 0.
This means that the Cauchy data corresponding to spacetimes that are time-symmetric with
respect to � are given by gij arbitrary and πij = 0 (in complete agreement with the simple
case presented above where q(0) is arbitrary and p(0) = 0). Let us denote by E the space
of all the possible Cauchy data, {gij (x

1, x2, x3), πij (x1, x2, x3)}, and by ES the space of the
Cauchy data that lead to time-symmetric geometries, {gij (x

1, x2, x3), πij (x1, x2, x3) = 0}.9
Analogous to the previous case we can conclude that ES is a proper subspace of E and, therefore,
time-asymmetric spacetimes are generic while time-symmetric spacetimes are extraordinarily
specific.

As we can see, this global geometrical approach does not have to face the problem of
explaining overwhelmingly improbable initial conditions in order to account for the arrow
of time. In contrast to the global entropic approach, from this perspective the arrow of time
is a completely generic feature which does not require an exceptional fine tuning of all the
variables of the universe.

4. Application to FLRW models

In the previous section we have considered the general conditions necessary for the existence
of a global and non-entropic arrow of time. Nevertheless, the argumentation would not be
complete if we did not apply those conditions to the particular case of our universe.

8 This demonstration could be extended to more general spacetimes by using the framework of [16] (p 251), but this
is not relevant to our case since we are interested in the problem of the arrow of time.
9 Although we have discussed the case of empty universes, the demonstration can be easily generalized to universes
with a scalar field or an electromagnetic field [19], and to many other solutions of the Cauchy problem [20, 21].
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As is well known, on the basis of the cosmological principle and the assumption of
expansion, the (averaged) metric of the spacetime can be represented in the simple Robertson–
Walker form:

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2 dθ2 + r2 sin2 θ dφ2

)
. (2)

With the Robertson-Walker metric, Einstein’s field equations can be solved: the corresponding
solutions describe the isotropic and homogeneous Friedmann–Lemâitre–Robertson–Walker
models, which are the standard models of present-day cosmology.

In the following subsections we will show that FLRW models satisfy the necessary
conditions for the existence of a global and non-entropic arrow of time, and we will define
such an arrow in this particular case.

4.1. Time-orientability

FLRW models provide a simple answer to the question of the first condition for the existence of
the arrow of time since they are time-orientable. Moreover, astronomical observations provide
empirical evidence that makes implausible the non-time-orientability of our spacetime. In
particular, there is no astronomical observation of temporally inverted behaviour in some
(eventually very distant) region of the universe.

According to contemporary cosmology, at the decoupling time (400 000 years after the
big bang) the universe was essentially composed of light elements such as H and He (with
traces of isotopes of these elements and of Li and Be) and was virtually free of ions. This
matter condensed in stars, where heavy elements were formed. The explosion of these
stars as supernovae scattered the heavy elements producing clouds which, in turn, condensed
giving rise to a second generation of stars. Analogously, a third generation appeared, and so
forth. We have indirect evidence of the first generation (known as population III), appearing
200 million years after the big bang, by the observed reionization of the universe which can
be explained only by the presence of stars during that period [22]. Then, two new generations
(populations II and I) followed. This is the history as manifest in all the universe.

• In this history, the evolutions of the different generations of supernovae always follow
the same pattern (let us say, from birth to death), and there is no trace of a time-inverted
pattern in the visible universe. This is a relevant fact in the context of our problem since
supernovae are the markers or standard candles used to measure the more distant galaxies
(z = 1 and even more) [23].

• In turn, the peak in the quasar formation rate took place when the universe was
3000 million years old (z ∼ 2), and this rate has always decreased since then (as shown by
astronomical observations in all spatial directions). This fact can be considered as a good
indication that the universe is time-orientable, at least up to the corresponding distances.

• Furthermore, the process of decoupling between matter and radiation occurred 400 000
years after the big bang (z = 1000, the limit of the visible universe in all spatial directions)
and never happened again. This fact also counts as evidence for the time-orientability of
the universe (from 400 000 years after the big bang up to the present).

4.2. Global time and cosmic time

As we have seen, the existence of a global time is a precondition for the arrow of time.
Nevertheless, cosmological models may have an even stronger temporal condition. In fact, a
global time function does not yet permit us to define the notion of simultaneity in a univocal
manner and with physical meaning. In order to avoid ambiguities in the notion of simultaneity,
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we must choose a particular foliation. The foliation τ such that there exists a continuous set of
worldline curves which are orthogonal to all the hypersurfaces τ = const is the proper choice,
because orthogonality recovers the notion of simultaneity of special relativity for small regions
(tangent hyperplanes) of the hypersurfaces τ = const (for the necessary conditions, see [19]).
However, even if this condition selects a particular foliation, it permits that the proper time
interval between two hypersurfaces of simultaneity be relative to the particular worldline
considered for computing it. If we want to avoid this situation, we must impose an additional
constraint: the proper time interval between two hypersurfaces τ = τ1 and τ = τ2 must be
the same when measured on any orthogonal worldline curve of the continuous set mentioned
above. In this case, the metric results

ds2 = dt2 − hij dxi dxj . (3)

Definition 8. When the metric of the spacetime can be expressed as ds2 = dt2 −hij dxi dxj , t

is the cosmic time and hij = hij (t, x1, x2, x3) is the three-dimensional metric of each
hypersurface of simultaneity.

Only the existence of a cosmic time guarantees that all the processes of the universe can
be coordinated by a single time, recovering the temporal structure of pre-relativistic physics
where the history of the universe as a whole can be conceived as the temporal sequence of its
instantaneous states.

These considerations can be easily applied to the case of FLRW models: since FLRW
models are spatially homogeneous and isotropic on the large scale, it is possible to find a family
of spacelike hypersurfaces which can be labelled by the proper time of the worldlines that
orthogonally thread through them: these labels define the cosmic time, which is represented
by the variable t, and the scale factor a is a function only of t. Therefore, to the extent that
FLRW models have a cosmic time, a fortiori, they satisfy the weaker condition of admitting
a global time function.

Let us note that the existence of a cosmic time imposes too strong a condition on realistic
cosmological models. For instance, a spacetime with cosmic time does not admit, for instance,
a local Schwarzschild metric; this fact, in turn, precludes the occurrence of well-known
physical phenomena, such as the existence of solar systems or the gravitational lensing effect.
This means that FLRW models are valid only on a large scale and in an averaged sense, but
must be modified when local cosmological phenomena have to be explained. Nevertheless,
this kind of modification does not count against the existence of a global and non-entropic
arrow of time, since such an arrow requires that the spacetime admits a global time function
and this condition holds even when local cosmological phenomena are taken into account.

It is interesting to emphasize how these considerations provide a further argument against
the global entropic approach, which relies on the possibility of defining the entropy gradient
of the universe, that is, the gradient of the entropy function S(t). In the standard formulations,
the variable t in the entropy function S(t) denotes the time that plays the role of a dynamical
parameter in the evolution of the universe. But, as we have seen, only the existence of a
cosmic time guarantees that the temporal structure of pre-relativistic physics can be recovered.
Therefore, if the universe has no cosmic time t, the function S(t) cannot be defined. This
means that, in order to define the arrow of time, the global entropic approach imposes a
condition so strong that would preclude well-known cosmological phenomena.

4.3. Time-asymmetry

When, as in the case of FLRW models, the spacetime admits a cosmic time, the issues of
time-reversal invariance and time-asymmetry can be presented in more familiar terms than
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those used in the previous sections. In fact, when the spacetime has a cosmic time, Einstein’s
field equations are time-reversal invariant in the sense that if hij (t, x1, x2, x3) of equation (3)
is a solution, hij (−t, x1, x2, x3) is also a solution. But the time-reversal invariance of these
equations does not prevent us from describing a time-asymmetric universe whose spacetime
is asymmetric regarding its geometrical properties along the cosmic time. In this case, the
concept of time-symmetry can be defined as follows.

Definition 9. A time-orientable spacetime which admits a cosmic time t is time-symmetric
with respect to some spacelike hypersurface t = tS , where tS is a constant, if it is time isotropic
and the diffeomorphism d leaves the hypersurface t = tS fixed.

On the basis of these considerations, it is easy to see that in FLRW models the time-
symmetry of spacetime may manifest itself in two different ways depending on whether the
universe has singular points at one or both temporal extremities10. Big bang–big chill universes
are manifestly time-asymmetric: since the scale factor a(t) increases with the cosmic time t,
there is no hypersurface t = tS from which the spacetime looks the same in both temporal
directions. In big bang–big crunch universes, in contrast, a(t) has a maximum value: therefore,
the spacetime might be time-symmetric about the time of maximum expansion. These are the
cases of some FLRW models with dust and radiation. In more general cases (e.g. inflationary
models) different fields can represent the matter–energy of the universe. Many interesting
results have been obtained, for instance, by modelling matter–energy as a set of scalar fields
φk(t): homogeneity is retained and the time-reversal invariance of the field equations is given
by the fact that, if [a(t), φk(t)] is a solution, [a(−t), φk(−t)] is also a solution. In these
cases, if there is a time tME of maximum expansion, the scale factor a(t) may be such that
a(tME + t) �= a(tME − t) (see, for instance, the models in [24]). This means that a big bang–
big crunch universe is generically a time-asymmetric object with respect to the metric of the
spacetime, and this asymmetry, essentially grounded on geometrical considerations, allows
us to distinguish between the two directions of the cosmic time, independently of entropic
considerations.

With regard to the generality of time-asymmetry in the particular case of FLRW models,
we have proved in [2] the vanishing probability of perfect time-asymmetry: that demonstration
was generalized in subsection 3.3 for time-orientable spacetimes admitting a global time but
which may lack a cosmic time.

5. From geometry to energy flow: the first role of the energy–momentum tensor

5.1. The arrow of time as energy flow

Up to now, the arrow of time was defined in terms of the substantial difference between the
vector fields γ µ(x) and −γ µ(x), grounded on the time-asymmetry of the spacetime. But
γ µ(x) was characterized merely as the vector field that must exist for the time-orientability of
spacetime. The question now is whether the arrow of time can be defined in a physical way,
that is, by means of a mathematical object that can be interpreted not only geometrically but
also in terms of the more familiar magnitudes of physics.

As is well known, the energy–momentum (or gravitational stress) tensor Tµν represents
the density and the flow of energy and momentum at each point of the spacetime. Then, it
would be desirable to define the vector field γ µ(x) in terms of Tµν in order to endow it with a

10 This depends on the values of the factor k and of the cosmological constant 	.



4456 M Castagnino and O Lombardi

physical meaning11. Although this task cannot be accomplished in a completely general case,
it is possible to define the arrow of time in terms of Tµν when the energy–momentum tensor
satisfies the dominant energy condition everywhere (see [16, 25]).

Definition 10. The energy–momentum tensor satisfies the dominant energy condition if, in
any orthonormal basis, the energy component dominates the other components of Tαβ:

T 00 � |T αβ | for each α, β

where α, β indicate the indices of the orthonormal bases.

This means that, to any observer, the local matter–energy density appears non-negative
and the energy flow is non-spacelike. The dominant energy condition does not impose a very
strong constraint, since it holds for almost all known forms of ordinary matter12.

Let us consider a continuous orthonormal basis field
{
V

µ

(α)(x)
}

(a tetrad or vierbein)
consisting of four unitary vectors

(
V

µ

(0)(x), V
µ

(1)(x), V
µ

(2)(x), V
µ

(3)(x)
)
. In this basis,

gµνV
µ

(α)V
ν
(β) = ηαβ are the coordinates of the local Minkowski metric tensor, and TµνV

µ

(α)V
ν
(β) =

Tαβ are the coordinates of the energy–momentum tensor. Then, T 0αV
µ

(α) can be conceived as
a vector representing the energy flow, whose coordinates in that basis are the T 0α . Now, if
T 00 � |T αβ |, then T 00 � |T 0α|. In turn, T 00 � |T 0α| implies that T 0αV

µ

(α) is non-spacelike. On
the other hand, if the manifold and the orthogonal basis field are continuous, gµν is continuously
defined over it and, provided that the derivatives of gµν are also continuous, T µν (T αβ) and,
then, T 0µ (T 0β) are also continuously defined all over the manifold. Therefore, it seems
that, in the regions where the density of matter–energy is non-zero, we have found a physical
correlate of the continuous non-vanishing non-spacelike vector field γ µ(x) = T 0α(x)V

µ

(α)(x).
The drawback of this conclusion is that T 0αV

µ

(α) is not strictly a vector, since it is not
transformed as a vector by the Lorentz transformations. Strictly speaking, at each point x
of the spacetime T 0α(x)V

µ

(α)(x) is a tetra-magnitude which represents the energy flow only
in the basis

{
V

µ

(α)(x)
}
; thus, it seems that it cannot directly play the role of γ µ(x) as initially

desired.
Nevertheless, the fact that the energy flow cannot be represented by a vector is not

an obstacle to the definition of the arrow of time in terms of such a flow. The dominant
energy condition poses a covariant condition: if the energy flow is non-spacelike in a
reference frame, it is non-spacelike in all reference frames. This means that irrespective
of which orthonormal basis

{
V

µ

(α)(x)
}

is chosen, the energy flow in that basis, represented
by T 0α(x)V

µ

(α)(x), can be used to define the arrow of time. The usual convention in physics
consists in calling the temporal direction of the positive energy flow ‘future’. In this case, at
any point x of the spacetime T 0α(x)V

µ

(α)(x) belongs to the future light semicone C+(x): the

11 Of course, this can be done only in the regions of spacetime where Tµν �= 0. In the regions where Tµν = 0, we are
forced to use the non-vanishing vector field γ µ, as explained in subsection 3.2.
12 There are, of course, strange cosmological ‘objects’ whose existence would lead to universes where the dominant
energy condition is not satisfied in certain regions of spacetime. For instance, in wormhole spacetimes, the dominant
energy condition is violated in the vicinity of the wormhole throat since the wormhole is threaded by negative ‘exotic’
matter (see [25]). Nevertheless, it is plausible to suppose that universes containing such kinds of objects will surely
not satisfy the stronger conditions necessary for defining the arrow of time, that is, time-orientability and existence
of global time.
At present, a non-negative pressure cosmological term Tµν seems to exist in the universe. Even though this term does
not satisfy the dominant energy condition, it can be considered as a background term, irrelevant for the local issues we
are considering here. To the extent that the ordinary matter term does satisfy the dominant energy condition, we can
include the non-negative pressure term on the lhs of Einstein’s equations as 	gµν , and the resulting rhs will satisfy
the dominant energy condition.
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energy flows towards the future for any observer. But the relevant point is that this statement
acquires a non-conventional meaning only when the substantial difference between past and
future has been previously established by the time-asymmetry of the spacetime (as shown in
subsection 3.2).

5.2. From the global arrow to the local arrow

As we have seen, according to the usual terminological convention, the future light semicone
C+(x) at each point x of the spacetime is defined by the positive energy flow T 0α(x)V

µ

(α)(x) at
this point. But, is T 0α really the energy flow used in local physics? Let us remember that Tµν

satisfies the ‘conservation’ equation:

∇µT µν = 0. (4)

However, this is not a true conservation equation since ∇µ is a covariant derivative. The usual
conservation equation with ordinary derivative reads

∂µτµν = 0 (5)

where τµν , the energy–momentum (or gravitational stress) pseudo-tensor (since it is not a
proper tensor), is defined as [19]

τµν = T
µν

eff = T µν + tµν. (6)

The correction term tµν reads

tµν = 1

16π

[
Lgµν − ∂L

∂g
µ

κλ,

gκλ,ν

]
(7)

where L is the system gravitational Lagrangian13. tµν is also a homogeneous and quadratic
function of the connection �λ

νµ [26], precisely:

tµν = 1

16πk

[(
2�

χ

λρ�
σ
χσ − �

χ

λσ�σ
ρχ − �

χ

λχ�σ
ρσ

)
(gµλgνρ − gµνgλρ)

+ gµλgρχ
(
�ν

λσ�σ
ρχ + �ν

ρχ�σ
λσ − �ν

χσ�σ
λρ − �ν

λρ�
σ
χσ

)
+ gνλgρχ

(
�

µ
λσ�σ

ρχ + �µ
ρχ�σ

λσ − �µ
χσ�σ

λρ − �
µ
λρ�

σ
χσ

)
+ gλρgχσ

(
�

µ
λχ�ν

ρσ − �
µ
λρ�

ν
χσ

)]
. (8)

Now we can consider the coordinates τ 0µ, which satisfy a usual conservation equation:

∂µτ 0µ = ∂0τ
00 + ∂iτ

0i = 0 (9)

where τ 00 represents the energy density and τ 0i are the three components of the spatial energy
flow (the Poynting vector).

Analogous to the case of the energy–momentum tensor, in any orthonormal basis{
V

µ

(α)

}
, τ 0αV

µ

(α) is not a vector since it is not transformed as a vector by the Lorentz
transformations. But in contrast to that case, the dominant energy condition cannot be
expressed in terms of τµν . However, this can be done in the particular case of local inertial
frames. In fact, in a local inertial frame, �λ

νµ = 0; thus, tµν = 0 (see equation (8)) and

13 Since both sides of Einstein’s equations satisfy the covariant conservation law (4), the same correction term tµν can
be used on both sides of such equations in order to obtain the corresponding usual conservation law (5). Therefore,
such a term can be computed by means of the gravitational Lagrangian that defines the lhs of those equations. This
means that the correction term tµν can be adequately defined when matter is present or in vacuum.
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τµν = T µν (see equation (6)). Therefore, in this case the dominant energy condition implies
that:

τ 00 � |ταβ | for each α, β. (10)

As a consequence, in the basis
{
W

µ

(α)

} = (
W

µ

(0),W
µ

(1),W
µ

(2),W
µ

(3)

)
of the local inertial frame,

the energy flow, represented by τ 0αW
µ

(α) and satisfying the usual conservation equation, is
non-spacelike.

Although this result cannot be generalized to all the reference frames of the whole
spacetime, it is relevant in local contexts since, in small regions of the spacetime, the metric
tends to the Minkowski form in local inertial frames14. In fact, any local region of the spacetime
can be approximated by the tangent Minkowski space (with orthonormal basis {V µ

(α)}) at any
point of that region. If

{
W

µ

(α)

}
is the basis of an inertial frame on this flat tangent space, τ 0αW

µ

(α)

represents the non-spacelike local energy flow satisfying the usual conservation equation15.
Moreover, at each point x of the local region, the local energy flow τ 0α(x)W

µ

(α)(x) belongs to
the same light semicone as the one to which T 0α(x)V

µ

(α)(x) belongs. Therefore, if we have
adopted the usual physical convention in the global level, we can also meaningfully say that
future is the temporal direction of the positive local energy flow: the local flow emitted at x
belongs to the light semicone C+(x).

This result is particularly relevant because local inertial frames are the reference frames in
which the non-relativistic local theories of physics are valid. In turn, ordinary quantum field
theory in flat spacetime must be considered as locally formulated in a local inertial frame. This
means that the local energy flow directed towards the future is the flow of energy as conceived
by this kind of theory, where energy satisfies the usual conservation law expressed by means
of ordinary derivatives. Summing up, τ 0µ inherits the time orientation defined at the global
level and, to the extent that it has a local physical meaning, it not only transfers the global
arrow of time to local contexts, but also translates the global arrow into a usual magnitude of
local physical theories.

5.3. The absolute nature of the arrow of time

As we have seen, the vector τ 0µ introduced above is always non-spacelike and, therefore, its
direction defines the arrow of time. However, we know that, given the time-reversal invariance
of Einstein’s field equations, in a time-orientable spacetime where t is the global time, if we
can obtain τ 0µ, we can also obtain −τ 0µ. At this point, the ghost of symmetry threatens again:
it seems that we are committed to providing a non-conventional criterion for picking out one
of both nomologically admissible solutions, one being the temporal mirror image of the other.
Nevertheless, as we will see, the threat is not as serious as it seems.

Replacing t by −t amounts to applying a symmetry transformation, in particular, time
reversal. The point is to understand the meaning of such a transformation. Under the active
interpretation, a symmetry transformation corresponds to a change from one system to another;
under the passive interpretation, a symmetry transformation consists in a change of the point of
view from which the system is described. The traditional position about symmetries assumes
that, in the case of discrete transformations, only the active interpretation makes sense: an
idealized observer can rotate himself in space in correspondence with the given spatial rotation,

14 Near each point x0, the metric can be approximated with the metric of the local free inertial frame as

ds2 = (1 − R0l0mxlxm) dt2 − ( 4
3 R0ljmxlxm

)
dt dxj +

(
δij − 1

3 Riljmxlxm
)

dxi dxj + O(|xj |3) dxα dxβ

(see [19] equation (13.73)). Therefore, locally in the inertial frame at x0, we can guarantee that τ 00 � |τ 0i |.
15 In fact, ∂µ

(
τ 0αW

µ

(α)

) = ∂µτ 0µ = 0 (see equation (9)).
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but it is impossible to ‘rotate in time’ (see [12, 27]). Of course, this is true when the idealized
observer is immersed in the same spacetime as the observed system. But when the system is
the universe as a whole, we cannot change our spatial perspective with respect to the universe:
it is as impossible to rotate in space as it is to rotate in time. However, this does not mean that
the active interpretation is the correct one: the idea of two identical universes, one translated in
space or in time with respect to the other, has no meaning. This shows that both interpretations,
when applied to the universe as a whole, collapse into conceptual nonsense.

In fact, in cosmology symmetry transformations are given neither an active nor a passive
interpretation: two mathematical models for the universe, defined by (M, g) and (M ′, g′), are
taken to be equivalent if they are isometric, that is, if there is a diffeomorphism θ : M → M ′

which carries the metric g into the metric g′ (see [16]). Since symmetry transformations are
isometries, two models related by a symmetry transformation (in particular, time-reversal) are
considered equivalent descriptions of one and the same universe. Therefore, it is not necessary
to find a non-conventional criterion for selecting one of two nomologically admissible solutions
to the extent that both are descriptions of a single possible universe.

These considerations point to the absolute character of the arrow of time embodied in
τ 0µ. This vector (in particular, its direction) is rigidly linked to the spacetime on which it
is defined. Changing τ 0µ by −τ 0µ amounts to changing the model by its temporal mirror
image; but, as we have shown, this step has no physical meaning since both models are merely
conventionally different descriptions of the same universe.

Let us note that we have not used the term ‘future’ in the present argument. If we adopt
the usual terminology, we will call the time direction of the energy flow ‘future’: in this case,
we can say that the vector τ 0µ points to the future. Nevertheless, it is worth remembering
that ‘past’ and ‘future’ are words that we use in our everyday language but they do not belong
to physical theories. Then, the choice of saying that τ 0µ points to the future is conventional:
we can replace ‘future’ by ‘past’ and nothing changes. What remains is the absolute and
substantial nature of the arrow of time defined by the unchangeable direction of τ 0µ.

5.4. Breaking the symmetry in time-reversal invariant theories

As we have seen in subsection 2.2, the Ehrenfests criticized Gibbs’ approach by pointing
out that the increase of the entropy towards the future is always matched by a similar one
in the past evolution of the system. It is interesting to note that this old discussion can be
generalized to the case of any kind of evolution arising from local time-reversal invariant
laws. In fact, time-reversal invariant equations always give rise to what we will call ‘time-
symmetric twins’ (see [2]), that is, two mathematical structures symmetrically related by a
time-reversal transformation: each ‘twin’, which in some cases represents an irreversible
evolution, is the temporal mirror image of the other ‘twin’. For instance, electromagnetism
provides a pair of advanced and retarded solutions, which are usually related to incoming and
outgoing states in scattering situations as described, e.g., by the Lax–Phillips scattering theory
[28]. In irreversible quantum mechanics, the analytical extension of the energy spectrum of
the quantum systems Hamiltonian to the complex plane leads to poles in the lower half-plane
(usually related to decaying unstable states) and symmetric poles in the upper half-plane
(usually related to growing unstable states) (see [29]). However, at this level the twins are
only conventionally different: we cannot distinguish between advanced and retarded solutions
or between lower and upper poles without assuming temporally asymmetric notions, as the
asymmetry between past and future or between preparation and measurement. Then, the
challenge consists in providing a non-conventional criterion for choosing one of the twins as
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physically relevant: such a criterion must establish a substantial difference between the two
members of the pair.

The arrow of time locally defined by τ 0µ is precisely what provides us the criterion for
establishing the desired substantial difference. In fact, τ 0µ says that at each point of the
spacetime the semicones C−(x) receive an incoming flow of energy while the semicones
C+(x) emit an outgoing flow of energy. Therefore, in each case the twin that must be retained
as physically relevant is the one that describes this kind of energy flow, from C−(x) to
C+(x). For instance, in electromagnetism only retarded solutions fulfil this condition since
they describe waves propagating into the semicone C+(x). In irreversible quantum mechanics,
only decaying unstable states with poles in the lower half-plane have the physical sense of
spontaneous evolutions, since they provide an energy flow contained in C+(x). In contrast,
the poles in the upper half-plane represent growing unstable states, which are not spontaneous
since they must be generated by pumping energy coming from the semicone C−(x), that is,
from the past. Summing up, by translating the geometrical global time-asymmetry in terms of
energy flow, τ 0µ can be used locally (at each point of the spacetime) for breaking the symmetry
of the set of solutions produced by time-reversal invariant laws (see [2] for more cases, e.g.,
thermodynamic twins, quantum measurement twins, decoherence twins, etc).

6. The non-time-reversal invariance of quantum field theory: the second role
of the energy–momentum tensor

6.1. The non-time-reversal invariance of axiomatic QFT

In any of its versions, axiomatic quantum field theory includes a non-time-reversal invariant
postulate (see [30–32]), which states that the spectrum of the energy–momentum operator P µ

is confined to a future light semicone, that is, its eigenvalues pµ satisfy

p2 � 0 p0 � 0.

This postulate says that, when we measure the observable P µ, we obtain a non-spacelike
classical pµ contained in a future semicone, that is, a semicone belonging to C+.

It is clear that the condition p0 � 0 selects one of the elements of the time-symmetric
twins p0 � 0 and p0 � 0 that would arise from the theory in the absence of the non-time-
reversal invariant postulate: by means of this postulate, QFT becomes a non-time-reversal
invariant theory. In turn, since QFT, being both quantum and relativistic, can be considered
one of the most basic theories of physics, the choice introduced by the condition p0 � 0 is
transferred to the rest of the physical theories. But such a choice is established from the very
beginning, as a postulate of the theory. The challenge is, then, to justify the non-time-reversal
invariant postulate by means of independent theoretical arguments.

As is well known, in the energy–momentum tensor, T 0i (x) represents the matter–energy
flow and T i0(x) represents the linear momentum density. Since T µν is a symmetric tensor,
T µν(x) = T νµ(x) and, therefore, T 0i (x) = T i0(x); in other words, the matter–energy flow
is equal to the linear momentum density. This means that if the matter energy flow T 0α can
be used to define the arrow of time under the dominant energy condition, this is also the case
for the linear momentum density T α0. On the other hand, we have seen in subsection 5.2 that
the local matter–energy flow τµν can be conceived as a conservative version of T µν in the
orthonormal coordinates of a local inertial frame; in this case, the dominant energy condition
has the consequence that τ 0µ is non-spacelike. Now we know that exactly the same conclusion
can be drawn for the local linear momentum density τµ0. But the local linear momentum
density τµ0 is precisely the local magnitude corresponding to the classical pµ of QFT; thus,
at each point x, pµ ∼ τ 0µ ∈ C+(x).



Generic nature of global and non-entropic arrow of time and dual role of energy–momentum tensor 4461

In conclusion, the fact that pµ at each point x of the local context and, therefore, for
every classical particle, must be contained in the future light semicone C+(x) turns out to
be a consequence of the global time-asymmetry of the spacetime when the dominant energy
condition holds everywhere. In other words, the non-time-reversal invariant postulate can
be justified on cosmological grounds instead of being imposed as a departure point for the
axiomatic version of QFT.

6.2. The non-time-reversal invariance of ordinary QFT

In this section we will analyse how time-reversal invariance is introduced in the ordinary
version of QFT. The classification of one-particle states according to their transformation
under the Lorentz group leads to six classes of 4-momenta (e.g. see [33], vol. I, p 65). Of
these classes, it is considered that only three have physical meaning: these are precisely the
cases which agree with the non-time-reversal invariant postulate of the axiomatic version of
QFT. In other words, the symmetry group of QFT is the orthochronous group (see [21, 34]),
where the space inversion P but not the time inversion T is included. This is another way
of expressing the non-time-reversal invariance of the QFT. In this case, the non-time-reversal
invariance is introduced not by means of a postulate but on the basis of empirical arguments
that make certain classes of 4-momenta physically meaningless. However, to the extent that
special relativity and standard quantum mechanics are time-reversal invariant theories, they
give no theoretically grounded justification for such a breaking of time-reversal invariance.
Nevertheless, as we have seen in the previous subsection, this justification can be given on
cosmological grounds.

Let us make the point in different terms. The quantum field correlates of P and T , P and
T, are defined as

PiP νP−1 = iPν
µP µ TiP νT−1 = iT ν

µ P µ

where P is a linear and unitary operator and T is an antilinear and antiunitary operator. In fact,
if T were linear and unitary, we could simply cancel the i and, then, TP νT−1 = −P µ: the
action of the operator T on the operator P ν would invert the sign of P µ, with the consequence
that the spectrum of the inverted energy–momentum operator would be contained in a past light
semicone. In particular, for ν = 0, P µ = H , where H is the energy operator; then, if T were
linear and unitary, THT−1 = −H with the consequence that for any state of energy E there
would be another state of energy −E. The antilinearity and antiunitarity of T avoid these
‘anomalous’ situations in agreement with the conditions imposed by the non-time-reversal
invariant postulate and, at the same time, make QFT non-time-reversal invariant. Once again,
there are good empirical reasons for making T antilinear and antiunitary, but there is no
theoretical justification for such a move.

Summing up, in ordinary QFT it is always necessary to take a decision about the time
direction of the spectrum of the energy–momentum operator P µ. The point that we want to
stress here is that, either in the case of the non-time-reversal invariant postulate of the axiomatic
version of QFT or in the case of the usual version of QFT, the decision can be justified on
cosmological grounds, as a consequence of the global time-asymmetry of the universe and the
dominant energy condition.

Finally, it is worth reflecting on the role of weak interactions in the problem of the arrow
of time. The CPT theorem states that CPT is the only combination of charge conjugation C,
parity reflection P and time-reversal T which is a symmetry of QFT. In fact, it is well known
that weak interactions break the T of the CPT theorem. According to a common opinion, this
empirical fact is precisely what gives the clue for the solution of the problem of the arrow of
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time: since the T symmetry is violated by weak interactions, they introduce a non-conventional
distinction between the two directions of time (see [25]). The question is: is it the breaking
of T that distinguishes both directions of time in QFT? As we have seen, the operator T was
designed precisely to avoid certain tetra-magnitudes, such as the linear momentum pµ, having
the ‘anomalous’ feature of being contained in a past light semicone: the action of the operator
T on the energy–momentum operator P µ preserves the time direction of P µ and, therefore,
of its eigenvalues. It is this fundamental fact that makes QFT non-time-reversal invariant, and
not the incidental violation of T by weak interactions16. This non-time-reversal invariance
of QFT, based on the peculiar features of the operator T, distinguishes by itself between the
two directions of time, without the need for weak interactions. In other words, even if weak
interactions did not exist, QFT would be a non-time-reversal invariant theory which would
define the arrow of time. The real problem is, then, to justify the non-time-reversal invariance
of a theory which is presented as a synthesis of two time-reversal invariant theories such as
special relativity and quantum mechanics. But this problem is completely independent of the
existence of weak interactions and the breaking of T introduced by them. Summing up, weak
interactions do not play a role as relevant in the problem of the arrow of time as is usually
assumed.

7. Conclusion

In this paper we have defined a physical object τ 0µ ∼ pµ that can play the role of the arrow
of time. Then, the mysterious and phantomlike arrow of Eddington is at last materialized.
In particular, we have shown the dual role played by the energy–momentum tensor in the
context of our approach to the problem of the arrow of time. When matter–energy flow is
considered, the energy–momentum tensor translates the generic geometrical time-asymmetry
of the universe in terms of energy flow. When linear momentum density is considered, the
energy–momentum tensor provides the means of justifying the time-asymmetry postulate of
axiomatic quantum field theory.
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